Group leader:   Prof. Alexey Kavokin

Research Associate Professor:    Dr. Igor Chestnov

Research Associate Professor:    Dr. Evgeny Sedov

The main expertise in

 Spin-orbit interaction of exciton-polaritons

• Built-in effects affecting polariton polarization

• Control of light polarization by an external impact

• Spin-to-orbital influence on the ballistic polariton transport

 Polariton liquids

• Transport of long-living polaritons

• Persistent polariton currents in annular traps

 Mixed Bose-Fermi systems

• Polariton-mediated superconductivity

• Control of electron transport by polariton condensates

 Superlattices and stratified media

• Design of structures for photonic and polaritonic experiments

• Bragg polaritons


Shan HY, Lackner L, Han B, Sedov E, Rupprecht C, Knopf H, Eilenberger F, Beierlein J, Kunte N, Esmann M, Yumigeta K, Watanabe K, Taniguchi T, Klembt S, Höfling S, Kavokin AV, Tongay S, Schneider C, Antón-Solanas C, "Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap", Nat Commun. 12, 6406 (2021)

Cao JH, Liberato SD, Kavokin AV, "Strong light-matter coupling in microcavities characterised by Rabi-splittings comparable to the Bragg stop-band widths", New J. Phys. 23, 113015 (2021)

Chestnov I,Yulin A, Shelykh IA, Kavokin AV, "Dissipative Josephson vortices in annular polariton fluids", Phys. Rev. B 104, 165305 (2021)

Kurdyubov AS, Trifonov AV, Gerlovin IY, Gribakin BF, Grigoryev PS, Mikhailov AV, Ignatiev IV, Efimov YP, Eliseev, SA, Lovtcius, VA, Aaamann M, Bayer M, Kavokin AV, "Optical control of a dark exciton reservoir", Phys. Rev. B 104, 035414 (2021)

"Magnetic field induced formation of a stationary charge density wave in a conducting Möbius stripe", Demirchyan S, Kavokin A, Phys. Rev. B 103, 245416 (2021)

Anton-Solanas C, Waldherr M, Klaas M, Suchomel H, Harder TH, Cai H, Sedov E, Klembt S, Kavokin AV, Tongay S, Watanabe K, Taniguchi T, Hofling S, Schneider C, "Bosonic condensation of exciton-polaritons in an atomically thin crystal", Nat. Mater. 20, 1233-1239 (2021)

Sedov E, Sedova I, Arakelian S, Kavokin A, "Polygonal patterns of confined light", Opt. Lett. 46, 1836-1839 (2021)

Sedov E, Sedova I, Arakelian S, Kavokin A, "Formation of Fractal Dendrites by Laser-Induced Melting of Aluminum Alloys", Nanomaterials. 11, 1043 (2021)

Kutrovskaya S, Demirchyan S, Osipov A, Baryshev S, Zasedatelev A, Lagoudakis P, Kavokin A, "Exciton radiative lifetime in a monoatomic carbon chain", New J. Phys. 23, 033007 (2021)

Chestnov IY, Arakelian SM, Kavokin AV, "Giant synthetic gauge field for spinless microcavity polaritons in crossed electric and magnetic fields", New J. Phys. 23 023024 (2021)

Kozin VK, Shabashov VA, Kavokin AV, Shelykh IA, "Anomalous Exciton Hall Effect", Phys. Rev.

Lett. 126, 036801 (2021)

Trifonov AV, Kurdyubov AS, Gerlovin IY, Smirnov DS, Kavokin KV, Yugova IA, Aßmann M, Kavokin AV, "Exciton energy oscillations induced by quantum beats", Phys. Rev. B 102, 205303 (2020)

Kavokin AV, Galperin YM, Varlamov AA, "Proposed Model of the Giant Thermal Hall Effect in Two-Dimensional Superconductors: An Extension to the Superconducting Fluctuation Regime", Phys. Rev. Lett. 125, 217005 (2020)

Ma XK , Kartashov YV, Kavokin A, Stefan S,"Chiral condensates in a polariton hexagonal ring",  Opt. Lett. 45, 5700-5703 (2020)

Kutrovskaya S, Osipov A, Baryshev S, Zasedatelev A, Samyshkin V, Demirchyan S, Pulci O, Grassano D, Gontrani L, Hartmann RR, Portnoi ME, Kucherik A , Lagoudakis PG, Kavokin A,"Excitonic Fine Structure in Emission of Linear Carbon Chains", Nano Lett. 20, 6502- 6509 (2020)

Sedov ES, Sedova IE, Arakelian SM, Kavokin AV, "Magnetic control over thezitterbewegungof exciton-polaritons", New J. Phys. 22, 083059 (2020)

Kutrovskaya S, Chestnov I, Osipov A, Samyshkin V, Sapegina I, Kavokin A, Kucherik A, "Electric field assisted alignment of monoatomic carbon chains", Sci Rep 10, 9709 (2020)

C. Rupprecht, E. Sedov, M. Klaas, H. Knopf, M. Blei, N. Lundt, S. Tongay, T. Taniguchi, K. Watanabe, U. Schulz, A. Kavokin, F. Eilenberger, S. Höfling, C. Schneider, Manipulation of room-temperature Valley-Coherent Exciton Polaritons in atomically thin crystals by real and artificial magnetic fields, accepted in 2D Materials (2020).

E. Sedov, I. Sedova, S. Arakelian, G. Eramo, and A. Kavokin, Hybrid optical fiber for light-induced superconductivity, accepted in Scientific Reports (2020).

E. Sedov, V. Lukoshkin, V. Kalevich, Z. Hatzopoulos, P. Savvidis, A. Kavokin, Persistent currents in half-moon polariton condensates, accepted in ACS Photonics (2020).

Y.Xue, I. Chestnov, E. Sedov, S. Schumacher, X. Ma, and A. Kavokin, Split-ring polariton condensates as macroscopic two-level quantum systems, arXiv:1907.00383.

I. I. Ryzhov, V. O. Kozlov, N. S. Kuznetsov, I. Yu. Chestnov, A. V. Kavokin, A. Tzimis, Z. Hatzopoulos, P. G. Savvidis, G. G. Kozlov, V. S. Zapasskii, Spin noise signatures of the self-induced Larmor precession,arXiv:2003.02771.

D. Caputo, E. S. Sedov, D. Ballarini, M. M. Glazov, A. K. Kavokin, and D. Sanvitto, Magnetic control of polariton spin transport, Communications Physics2, 165 (2019).

D. Ballarini, I. Chestnov, D. Caputo, M. De Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, A. Kavokin, and D. Sanvitto, Self-Trapping of Exciton-Polariton Condensates in GaAs Microcavities, Phys. Rev. Lett.123, 047401 (2019).

N. Lundt, M. Klaas, E. Sedov, M. Waldherr, H. Knopf, M. Blei, S. Tongay, S. Klembt, T. Taniguchi, K. Watanabe, U. Schulz, A. Kavokin, S. Höfling, F. Eilenberger, and C. Schneider, Magnetic-field-induced splitting and polarization of monolayer-based valley exciton polaritons, Phys. Rev. B100, 121303(R) (2019).

I. Y. Chestnov, A. V. Kavokinand A.V. Yulin, The optical control of phase locking of polariton condensates,New J. Phys.21, 113009 (2019).

I. Y. Chestnov, Y. G. Rubo, A. V. Kavokin, Pseudodrag of a polariton superfluid, Phys. Rev. B100,  085302 (2019).

E. S. Sedov, Y. G. Rubo, A. V. Kavokin, Polariton polarization rectifier, Light: Science & Applications8, 79 (2019).

N. Lundt, Ł. Dusanowski, E. Sedov, P. Stepanov, M. M. Glazov, S. Klembt, M. Klaas, J. Beierlein, Y. Qin, S. Tongay, M. Richard, A. V. Kavokin, S. Höfling and C. Schneider, Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor,Nature Nanotechnology14, 770 (2019).

D. Schmidt, B. Berger, M. Kahlert, M. Bayer, C. Schneider, S. Höfling, E. S. Sedov, A. V. Kavokin, and M. Aßmann, “Tracking Dark Excitons with Exciton Polaritons in Semiconductor Microcavities”, Phys. Rev. Lett. 122, 047403 (2019).

I.Yu. Chestnov, T. A. Khudaiberganov, A. P. Alodjants, and A. V. Kavokin, Heat-assisted self-localization of exciton polaritons, Phys. Rev. B98, 115302 (2018).

M. Sich, L. E. Tapia-Rodriguez, H. Sigurdsson, P. M. Walker, E. Clarke, I. A. Shelykh, B. Royall, E. S. Sedov, A. V. Kavokin, D. V. Skryabin, M. S. Skolnick, and D. N. Krizhanovskii, “Spin Domains in One-Dimensional Conservative Polariton Solitons”, ACS Photonics5, 5095−5102 (2018).


The sketch of an electrically biased microcavity stripe for the observation of the pseudodrag effect with a polariton superfluid. The stimulated relaxation of moving uncondensed excitons dragged by the electric current favors the formation of a moving condensate. The reciprocal effect of acceleration of the charge carriers by the moving polariton superfluid leads to the circular electric current in a cylindrical micropillar geometry. [Chestnov et al., PRB 100, 085302 (2019)].


Schematic of the polariton polarization rectifier – a novel photonic device intended to transform polariton pulses with arbitrary polarization into linearly polarized pulses with controllable orientation of the polarization plane. [Sedov et al., Light Sci.Appl. 8, 79 (2019)]


Proposal of a double microcavity with two coaxial dipolariton condensates for two-qubit information processing with ring-shaped polariton condensates. Three electrodes generate a radial electric field, which in combination with the perpendicular external magnetic field introduces an artificial gauge potential required for the implementation of quantum protocols. A three-step protocol for the implementation of the iSWAP two-qubit gate is shown on the right. [Xue, Chestnov, Sedov et al., arXiv:1907.00383]


Design of a hybrid optical fiber for light-induced superconductivity. The critical temperature for a superconducting phase transition in the second cladding layer may be strongly enhanced due to the coupling of the superconductor to a bosonic condensate of exciton-polaritons optically induced by the evanescent part of the guiding mode confined in the core.[Sedov, et al., Scientific Reports (2020)]


Persistent circular currents of exciton-polaritons in cylindrical micropillar cavities. Breaking the azimuthal symmetry allows the formation of polariton condensates with fractional orbital angular momenta. A gradual ±π variationof the phase of the condensate wave function around the pillar coexists with the π-jump of the phase. Interference pattern formed by the photoluminescence signal from the condensate with the spherical wave represent concentric fringes abruptly shifted one from another near the phase jump. [Sedov, et al., ACS Photonics (2019)]


Office 708-709, Building #4, Yunqi Campus

Westlake University18 Shilongshan Road,

Cloud Town,

Xihu District,

Hangzhou 310024,


Contact number: +8618758067878


Westlake University
Shilongshan ST #18, Xihu District, Hangzhou, Zhejiang Province, CN

中国浙江省杭州市西湖区云栖小镇石龙山街18号   0571-85273916

©2019 by International Center for Polaritonics    浙ICP备16029590号